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Dirac Quantization of t’Hooft-Polyakov Monopole
Field: Axial Hamiltonization
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In this article, we carry out the Hamiltonization in the axial gauge, of the t’Hooft-
Polyakov monopole field outside the localized region, which represents the monopole’s
core. One feature of the treatment here, is using the Higgs vacuum condition as both
strong and weak equation instead of using it in the degree of freedom reduction.
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1. INTRODUCTION

The t’Hooft-Polyakov monopole model (t’Hooft, 1974; Polyakov, 1974;
Goddard and Olive, 1978) consists of an SO(3) gauge field interacting with
an isovector Higgs field φ, whose non-singular extended solution looks, at large
distances, like a Dirac monopole.

The model’s Lagrangian is:

L = −1

4
Gµν

a Gaµν + 1

2
Dµφ.Dµφ − V (φ)

where:

φ = (φ1, φ2, φ3), and V (φ) = 1

4
λ
(
φ2

1 + φ2
2 + φ2

3 − a2
)2

G
µν
a is the gauge field strength: Gµν

a = ∂µWν
a − ∂νW

µ
a − eεabcW

µ

b Wν
c , where W

µ
a

is the gauge potential.
Let the monopole configuration be centered at the origin, the requirement of

total energy finiteness implies that there is some radius r0 such that for r ≥ r0 we
have, to a good approximation:

Dµφ ≡ ∂µφ − eWµ × φ = 0 (1)

φ2
1 + φ2

2 + φ2
3 − a2 = 0, (⇒ V (φ) = 0). (2)
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Regions of space-time, where the above equations are satisfied, constitute the
Higgs Vacuum.

The symmetry group SO(3), generated by Ta’s, is spontaneously broken, by
the Higgs Vacuum, down to U (1) generated by φ·T

a
.

The general form of Wµ satisfying (1), provided φ satisfies (2), is (Corrigan,
1976):

Wµ = 1

a2e
φ × ∂µφ + 1

a
φAµ, (3)

where Aµ is arbitrary.
It follows that:

Gµν = 1

a
φFµν (4)

where,

Fµν = 1

a3e
φ.(∂µφ × ∂νφ) + ∂µAν − ∂νAµ (5)

So in Higgs vacuum, L will reduce to:

L = −1

4
Gµν

a Gaµν,

and on account of (2) and (4), we get:

L = −1

4
FµνFµν (6)

[We will use the metric(+, −, −, −).]

2. HAMILTONIZATION

To quantize a theory canonically, we need first to hamiltonize it, that is to find
the Hamiltonian describing the system as a function of the dynamical variables
and their conjugate momenta only. Finding such a Hamiltonian is easy only in the
standard case, in which the conjugate momenta are independent functions of the
velocities. This is not the case here: Our conjugate momenta are not all independent
and we will have to apply the Dirac algorithm for constrained systems (Dirac, 1950,
1951; Hanson et al., 1976).

In the monopole field region, where (1) and (2) are satisfied, i.e. in the Higgs
Vacuum, L is given by:

L = −1

4
FµνFµν = −1

4

[
1

a6e
εijkεrstφiφr∂

µφj∂
νφk∂µφs∂νφt

+ 2(∂µAν − ∂νAµ)∂µAν + 4

a3e
εijkφi∂

µφj∂
νφk∂µAν

]
. (7)
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The Conjugate momentum of dynamical coordinates φ�(x) is:

π�(x) ≡ ∂L
∂φ̇�(x)

= εij�

a3e
φi∂

kφj

(
εrst

a3e
φr∂0φs∂kφt + ∂0Ak − ∂kA0

)
. (8)

The conjugate momentum of dynamical coordinates, Aη(x) is:

	η(x) ≡ ∂L
∂Ȧη(x)

= εrst

a3e
φr∂ηφs∂0φt + ∂ηA0 − ∂0Aη

=
{

0, for η = 0

Fi0, for η = i = 1, 2, 3
(9)

By comparing (8) with (9), we arrive at the following relations between the
momentum variables:

π�(x) = −εij�

a3e
φi(x)∂kφj (x)	k(x), where � = 1, 2, 3.

So we get the “primary” constraints:


�(x) ≡ π�(x) + εij�

a3e
φi(x)∂kφj (x)	k(x) ≈ 0, where � = 1, 2, 3 (10)

and


0(x) ≡ 	0(x) ≈ 0, (11)

and since we are restricting our region to the Higgs Vacuum,we also impose the
strong condition (2) as a constraint:

χ (x) ≡ φ2
1(x) + φ2

2(x) + φ2
3(x) − a2 ≈ 0 (2a)

((2a) will be used as a strong equation whenever possible, despite it being incor-
porated into the formulation as a weak equation as well.) Using (11), we can solve

for Ȧi on the constraint surface, call it ¯̇A
i
:

¯̇A
i
(φ�,A

η,	j , φ̇k) = εrst

a3e
φr∂0φs∂iφt + 	i − ∂iA

0 (12)

On the constraint surface, the Hamiltonian density, H , is equal to function of the
coordinates and momenta, call it H, (Dirac, 1950, 1951; Hanson et al., 1976;
Gitman and Tyutin, 1990) where:

H ≡ [(∂L/∂φ̇�) φ̇� + (∂L/∂Ȧη)Ȧη − L]|
Ȧi= ¯̇A

i

= 1

2
	i	i − 	i∂iA0 + 1

2
∂iAj

(
∂iAj − ∂jAi

) + εrst

a3e
φr∂

iφs∂
jφt∂iAj

+ εijkεrst

4a6e2
φiφr∂

mφj∂
nφk∂mφs∂nφt

= 1

2
	i	i − 	i∂iA0 + 1

4
FijFij (13)
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Now, using Eqs. (13), (10), (11), and (2a), we find that the consistency condi-
tions (Dirac, 2001): 
̇ (q, p) ≈ 0, will lead to one new “secondary” constraint,
namely:


̇0 = 	0,0 =
∫

d3x ′{	0(x),H (x′)} =
∫

d3x ′{	0(x),H(x′)} = ∂i	i ≈ 0

(14)
[where the fact that 
0 has vanishing Poisson Brackets with other constraints has
been used.] ∂i	i , has identically vanishing Poisson Brackets with H and all the
constraints, and therefore will not lead to any new constraints.

On the other hand, we find there are two independent combinations of 
1,

2, 
3 and χ which are first class constraints:

Any combination of the form, ηk ≡ εijkφj
i − 1
2αkχ, where k = 1, 2, 3

and (where, αk ≡ 3
a3e

	�∂
�φk), will have vanishing Poisson Brackets with 
1, 
2,


3 and χ , on the constraint surface, and therefore with any combinations of them.
On account of χ being strong equation, (i.e. φi∂

µφi = 0), we see that:
φkηk = 0, and therefore only two of the three ηk‘s are independent. Since ηk‘s and
combinations of them are the only possible forms of first class constraints formed
from 
1,
2,
3, andχ . (Allowing combinations that involves, also, (11) and (14)
will not help in finding any new independent first class constraints, since (11) and
(14) are already first class.) Therefore we can only have two first class constraints
formed of 
i

′s and χ : η3 and η1 say.
We will replace the set of constraints 
1,
2,
3, andχ by ζ1, ζ2, ζ3, andζ4:

ζ1 ≡ η3 = φ2
1 − φ1
2 − α3

2
χ

ζ2 ≡ η1 = φ3
2 − φ2
3 − α1

2
χ

ζ3 ≡ 1

2a2
(φ1
1 + φ2
2 + φ3
3)

ζ4 ≡ χ = φ2
1 + φ2

2 + φ2
3 − a2

(15)

Consistency conditions associated with ζ1 and ζ2 will be weakly satisfied on
account of χ being strong equation, (i.e. φi∂

µφi = 0), and that ζ1, ζ2 are first class:
∫

d3x ′{ηk(x),H (x′)}

≈ εijkφj (x)
∫

d3x ′{
i(x),H(x′)} − 1

2
αk(x)

∫
d3x ′{χ (x),H(x′)}

= −3

2
εijkεirsφj ∂

mφr∂
nφsFmn + 0

= 3φk∂
mφk∂

nφkFmn = 0, (we used, φi∂
µφi = 0, in the step before last.)
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Consistency conditions associated with ζ3andζ4 will not lead to new constraints
either, but they will impose conditions on the velocities. It may be worth men-
tioning at this point, that choosing ζ3 as above is convenient, since under a certain
canonical transformation in which ζ4 is a coordinate, ζ3 will be its correspond-
ing conjugate momentum (unique up to additional terms with weakly vanishing
Poisson Bracket with ζ4).

The constraint (11), 
0 ≡ 	0, is primary first class, and therefore a de-
generacy of the Hamiltonian will be associated with it (Hanson et al., 1976),
(i.e., solutions of the Lagrangian equations contain an arbitrary function of time
associated with 
0).

We lift the above degeneracy by imposing a gauge given by the supplementary
condition, (a constraint), call it ζ (x):

ζ (x) ≡ A0(x) ≈ 0. (16)

Imposing (16) will lead to contradiction upon passing to quantum theory (Dirac,
2001).

Following Dirac, the degree of freedom, A0, will be discarded, because A0

and 	0 are restricted to be zero at all time, and therefore they are of no interest to
us.

H, (13), upon the above reduction of degrees of freedom, will reduce to:

H = 1

2
	i	i + 1

4
FijFij . (13a)

Constraint (14), is first class, and we will call it, ζ5:

ζ5 ≡ ∂i	i (17)

Now, we have three first class constraints: ζ1, ζ2 and ζ5. We, also, have two second
class constraints: ζ3 and ζ4. Similar to what was done in the case of the constraint,

0, we will impose three supplementary conditions, “gauges”, to lift the degener-
acy caused by ζ1, ζ2 and ζ5 being first class. The gauge fixing conditions we will
impose are:

ζ6 ≡ 1

ae

(
φ2∂

3φ1 − φ1∂
3φ2

) − A3φ3 ≈ 0

ζ7 ≡ 1

ae

(
φ3∂

3φ2 − φ2∂
3φ3

) − A3φ1 ≈ 0

ζ8 ≡ A3 ≈ 0

(18)

It is clear that ζ8 is the axial gauge associated with Ai’s. Similarly, ζ6 and ζ7 are
the axial gauge associated with Wµ, i.e. W3 ≈ 0. From Eq. (3), we can easily see
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that:

ζ6 = −1

a

(
W3

)
3 ≡ −1

a
W 3

3

ζ7 = −1

a

(
W3

)
1 ≡ −1

a
W 3

1 .

[Notice that we don’t need to impose additional constraint to ensure that
(
W3

)
2 ≈

0, since this is identically satisfied on the constraint surface, where ζ6 and ζ7 are
valid, since we have: W3.∂3φ = W 3

a ∂3φa = 0,which we arrive at using Eq. (3),
and that χ is a strong equation (i.e., φi∂

µφi = 0).]
The Poisson Brackets amongst the constraints, including the gauge fixing

conditions, are given on the constraint surface by the matrix, C(x, x′), where:

Cij (x, x′) ≡ {ζi(x), ζj (x′)}∣∣
ζk≈0,k=1,...,8 (19)

After calculating the Poisson Brackets, and then evaluating them on the constraint
surface, the non-vanishing elements of the matrix, C, will be:

C16(x, x′) = −C61(x′, x) = − 1

ae
[φ1(x)φ1(x′) + φ2(x)φ2(x′)]∂3′δ3(x − x′)

C17(x, x′) = −C71(x′, x) = 1

ae
φ1(x)φ3(x′)∂3′δ3(x − x′)

C18(x, x′) = −C81(x′, x) = − 1

ae
δ3(x − x′)∂3φ3(x)

C26(x, x′) = −C62(x′, x) = 1

ae
φ1(x′)φ3(x)∂3′δ3(x − x′)

C27(x, x′) = −C72(x′, x) = − 1

ae
[φ2(x)φ2(x′) + φ3(x)φ3(x′)]∂3′δ3(x − x′)

C28(x, x′) = −C82(x′, x) = − 1

ae
δ3(x − x′)∂3φ1(x)

C34(x, x′) = −C43(x′, x) = −δ3(x − x′)

C36(x, x′) = −C63(x′, x) = 1

ae
[φ2(x)φ1(x′) − φ1(x)φ2(x′)]∂3′δ3(x − x′)

C37(x, x′) = −C73(x′, x) = 1

ae
[φ2(x)φ3(x′) − φ3(x)φ2(x′)]∂3′δ3(x − x′)

C56(x, x′) = −C65(x′, x) = φ3(x′)∂3δ3(x − x′)

C57(x, x′) = −C75(x′, x) = φ1(x′)∂3δ3(x − x′)

C58(x, x′) = −C85(x′, x) = −∂3δ3(x − x′)
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On the constraint surface, (in particular using ζ6 and ζ7 combined with ζ8 and that
φi∂

µφi = 0), the non-vanishing elements of the inverse matrix, C−1, will be:

C−1
43 (x, x′) = −C−1

34 (x′, x) = −δ3(x − x′)

C−1
61 (x, x′) = −C−1

16 (x′, x) = ae

φ2
2(x)

[
1

a2
φ2

1(x) − 1

]
F (x, x′)

C−1
62 (x, x′) = −C−1

26 (x′, x) = −ae

φ2
2(x)

[
1

a2
φ1(x)φ3(x)

]
F (x, x′)

C−1
65 (x, x′) = −C−1

56 (x′, x) = 1

φ2
2(x)

[
1

a2
φ1(x){φ1(x)φ3(x′) − φ3(x)φ1(x′)}

− φ3(x′) + φ3(x)

]
F (x, x′)

C−1
71 (x, x′) = −C−1

17 (x′, x) = −ae

φ2
2(x)

[
1

a2
φ1(x)φ3(x)

]
F (x, x′)

C−1
72 (x, x′) = −C−1

27 (x′, x) = ae

φ2
2(x)

[
1

a2
φ2

3(x) − 1

]
F (x, x′)

C−1
75 (x, x′) = −C−1

57 (x′, x) = 1

φ2
2(x)

[
1

a2
φ3(x){φ1(x′)φ3(x) − φ3(x′)φ1(x)}

− φ1(x′) + φ1(x)

]
F (x, x′)

C−1
81 (x, x′) = −C−1

18 (x′, x) = −ae

φ2
2(x)

φ3(x)F (x, x′)

C−1
82 (x, x′) = −C−1

28 (x′, x) = −ae

φ2
2(x)

φ1(x)F (x, x′)

C−1
85 (x, x′) = −C−1

58 (x′, x) = −1

φ2
2(x)

[φ1(x)φ1(x′) + φ3(x)φ3(x′) − a2]F (x, x′)

[where, we have: ∂3F (x, x′) = −δ3(x − x′), and hence, we get: F (x, x′) =
1

2
δ(x1 − x ′1)δ(x2 − x ′2)ε(x3 − x ′3), where, ε(x3 − x ′3) ≡ algebraic sign of

(x3 − x ′3).]

3. CONCLUSION

Now, that we arrived at C−1(x, x′), we can use it to evaluate the Dirac
Bracket for arbitrary functions of the coordinates and the momenta, where the
Dirac Bracket between η(q(x), p(x)) and ξ (q(x′), p(x′)), is given by Gitman,
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Tyutin (1990) and Dirac (2001):

{η(x), ξ (x′)}D(ζ ) ≡ {η(x), ξ (x′)} −∫∫
{η(x), ζα(x′′)}d3x ′′C−1

αα′ (x′′, x′′′)d3x ′′′{ζα′(x′′′), ξ (x′)}

where, α, α′ = 1, 2, . . . , 8, and where ζα‘s are given by Eqs. (15), (17), and (18).
For computing the Dirac Bracket, second class constraints (i.e., all the con-

straint available in the theory at this point; the original ones along with the gauge
fixing ones), can be treated as strong equations.

To quantize the above “Hamiltonized” classical theory, we have to follow the
standard procedure (Gitman and Tyutin, 1990; Dirac, 2001):

1. Classical variables will correspond to operators acting on the Hilbert
space.

2. Dirac Bracket will correspond to the commutator multiplied by −i
h̄

.
3. The constraint equations are strong relations among operators.
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